

"双碳"目标下大气环境光学监测技术发展机遇

刘文清*

中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽 合肥 230031

摘要 大气环境污染不仅影响气候变化,还严重威胁人类的生命健康。在"双碳"背景下,温室气体减排和大气污 染治理具有显著的协同性,二者同根同源,都涉及大气成分的变化。大气环境问题的解决依赖于环境监测技术的 发展。光学监测技术以其强扩展性和非接触、高灵敏、探测目标广的技术特点,在大气环境立体监测领域优势明 显,且成为环境监测技术发展的主导方向。目前研究人员已基于卫星平台、地基平台和移动平台发展出了差分吸 收光谱技术、激光雷达技术、光腔衰荡光谱技术、傅里叶变换红外光谱技术、可调谐半导体激光吸收光谱技术和气 体扩张激光诱导荧光技术等一系列成熟的大气环境光学监测技术。此外,大气环境多平台天空地一体化立体监测 技术在减污降碳中发挥了重要作用。推动监测设备的国产化及通过学科交叉融合促进监测技术走向立体化、自动 化和智能化应用成为未来大气环境光学的主要发展方向。

关键词 光谱学; 立体监测; 减污降碳; 天空地一体化 中图分类号 X831 **文献标志码** A

doi: 10.3788/AOS202242.0600001

Opportunities and Challenges for Development of Atmospheric Environmental Optics Monitoring Technique Under "Double Carbon" Goal

Liu Wenqing

Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China

Abstract Air pollution not only affects climate change, but also seriously threatens human life and health. In the background of "double carbon", greenhouse gas emission reduction and air pollution control have significant synergy, and they have the same roots and both involve changes in atmospheric composition. The solution of atmospheric environmental problems depends on the development of environmental monitoring technology. Spectroscopy monitoring technology has obvious advantages in the field of atmospheric stereoscopic monitoring and has become the leading direction of the development of environmental monitoring technology based on its strong scalability, non-contact, high sensitivity, and wide detection targets. At present, a series of mature atmospheric optical monitoring technologies, such as differential optical absorption spectroscopy, lidar technique, cavity ring-down spectroscopy, Fourier transform infrared spectroscopy, tunable diode laser absorption spectroscopy, and laser induced fluorescence technology by gas expansion, have been developed based on satellite, ground-based, and mobile platforms. In addition, the atmospheric environmental space-air-ground integrated stereoscopic monitoring technology based on multiple platforms has played an important role in pollution and carbon reduction. Promoting the localization of monitoring equipment and the monitoring technology to stereoscopic, automated, and intelligent applications through interdisciplinary integration has become the main development direction of atmospheric environmental optics in the future.

Key words spectroscopy; stereoscopic monitoring; pollution and carbon reduction; space-air-ground integration

收稿日期: 2022-01-29; 修回日期: 2022-02-10; 录用日期: 2022-02-16 基金项目:国家自然科学基金联合基金(U19A2044)、中国工程院咨询项目(2020000019) 通信作者: *wqliu@aiofm.ac.cn

第 42 卷 第 6 期/2022 年 3 月/光学学报

1 引 言

环境污染和气候变化是我国生态环境建设的两 大关键问题。自从有了人类,构成地球大气的主要 成分没有很大变化,而微量成分却变化明显,人类及 其活动以及自然过程对大气成分影响极大,有时危 害非常严重。人类的生存环境与大气成分变化密切 相关:1)空气质量变化,涉及环境污染、能见度下降、 生态系统破环、人类健康;2)气候变化,涉及地球辐 射收支平衡产生的级联影响的大气成分。所以,大 气成分变化及其引发的大气化学过程和物理特性变 化都将深刻影响着现在和未来的世界。理解这些变 化、减轻这些危害,就需要发展先进监测技术和相应 的仪器设备。当前大气环境科技呈现跨介质、全尺 度、高精度等趋势,研究尺度向更广、更深入延展,有 利于解决全球问题与区域治理关联,而且学科交叉 融合明显,技术装备向自动化、智能化发展。

2013年以来,我国相继颁布了《大气污染防治 行动计划》和《打赢蓝天保卫战三年行动计划》,大气 环境质量明显改善,其中,主要颗粒物($PM_{2.5}$)、二氧 化硫(SO_2)和氮氧化物(NO_x)的排放量均大幅下 降^[1-3]。但是, $PM_{2.5}$ 浓度尚未达标,远高于世界卫 生组织指导值,进一步下降的难度加大。随着 $PM_{2.5}$ 浓度的下降,近年来臭氧(O_3)浓度不断上升, 已成为仅次于 $PM_{2.5}$ 的影响我国环境质量和人体健 康的第二大污染物。开展 $PM_{2.5}$ 和 O_3 的协同控制 已被纳入我国"十四五"规划。2020年我国提出了 碳达峰、碳中和("双碳")目标,强调空气质量改善与 应对气候变化的协同、PM_{2.5} 与 O₃ 污染治理协同, 以及常规与非常规污染物治理协同。

减污降碳对智能感知和靶向溯源技术提出了更 高的需求,同时也对现有大气污染及温室气体监测 技术提出了新的挑战。此外,结合我国目前存在的 污染物区域分布不均匀、空间传输频繁和二次生成 显著的大气污染现状和能源结构复杂与核算困难的 碳排放现状,仅依靠传统的地面大气环境监测技术 已远远不够^[4]。Liu 等^[4-5]指出,典型传输通道上存 在明显的大气污染物高空输送带,如果仅依靠地面 监测数据量化大气污染物的传输通量,则本地排放 的贡献很可能被高估。因此,亟须发展大气环境立 体探测技术。虽然目前我国已经建成了包含 5000 余个监测站点的国家、省、市、县4个层次的环境空 气质量监测网,但这些监测站点大多集中在城镇地 区,依然无法实现全覆盖监测;同时,现有的球基、塔 基和无人机搭载采样设备的垂直监测手段不仅监测 时间分辨率低,监测成本也相对较高[6-11]。

至今还没有一种单一技术能满足大气痕量成分 监测的多种要求,不同的监测平台有着各自的优缺 点:地基现场监测准确快速,但只用于局地近地面监 测;地基遥感可以获得整层柱浓度,但也只能用于某 个地点的监测;机载或球载遥感可以机动准确地获 得垂直和水平分布,但测量频次受限;卫星遥感全球 覆盖,但测量误差较大,观测时间受限。所以,发展 更高精度、更多成分、更大范围、更加实用的多平台 多维大气环境监测技术才能满足大气成分及其变化 的各种需求,见图1。

图 1 大气环境多平台多维度监测技术系统及其功能

Fig. 1 Multi-platform multi-dimensional monitoring system of atmospheric environment and its functions

第 42 卷 第 6 期/2022 年 3 月/光学学报

大气污染物与温室气体具有显著的协同性,二 者同根同源,都涉及大气成分的变化,但是它们的监 测技术原理和仪器构成千变万化,取决于所监测对 象的浓度和来源。环境光学监测技术从根本上改变 了环境研究传统的由点到线再到面的演绎法,为生 态环境研究提供了一个全新的研究角度,克服了传 统环境研究中的诸多局限性。特别是采用相干光源 的激光技术,其将测量低层大气环境任意测程上的 化学和物理性质的测量手段从点式传感器转向距离 分辨的遥感测量技术,实现了多空间尺度性、多时间 尺度性、多参数遥感遥测。图 2 为大气污染控制对 特征排放因子和气候变化的影响示意图。

图 2 大气污染控制对特征排放因子和气候变化的影响(其中 VOCs 和 BC 的气候效应并不完全确定)^[12] Fig. 2 Effect of air pollution control on characteristic emission factors and climate change (climatic effects of VOCs and BC are not fully determined)^[12]

本文首先对大气环境光学技术的发展现状和最新 进展进行了梳理,阐明了其在大气环境立体监测中发 挥的重要作用;其次,对现阶段大气环境光学监测手段 所面临的亟须突破的技术瓶颈和现实需求、国产光谱 设备的发展方向和大气环境监测多学科交叉融合发展 提出了新的看法;深化了对大气污染机理及其与气候 变化关系的认识,以助力实现减污降碳的科学目标。

2 大气环境光学监测技术发展现状与 进展

基于光学/光谱学原理的环境监测技术由于具

有非接触、无采样、高灵敏度、大范围快速监测等特 点,是国际上环境监测技术的主要发展方向之 一^[13]。首先建立了环境光学监测技术研究平台,在 这个平台上研究光与大气成分的相互作用,设计研 制大气成分在紫外/可见光/红外波段的分子吸收截 面测量装置,解决谱线温度和压力补偿问题,建立大 气成分光谱特征数据库,这是大气成分定量分析和 仪器研发的基础。接着需要研发大气成分的光谱定 量解析算法,结合光、机、电、算工程技术,就可以开 展对多种污染物的监测技术方法研究。图3给出了 大气痕量成分光学监测谱系图。

Fig. 3 Spectrogram of optical monitoring of atmospheric trace components

经过十几年的努力,我国一些科研院所和大学 等单位发展了主、被动差分光学吸收光谱学 (DOAS)、主被动傅里叶变换红外光谱学(FTIR)、 可调谐半导体激光光谱学(TDLAS)、光腔衰荡光谱 学(CRDS)、大气环境监测激光雷达(LIDAR)、激光 诱导荧光光谱学(LIFS)、测量气溶胶颗粒物的光与 激光散射技术,以及测量环境中微量重金属含量的 激光诱导击穿光谱学(LIBS)等。这些技术可以用 于在线现场监测、地基平台监测、机载(无人机)平台 监测、球载平台监测和星载平台监测,实现不同平台 的大气环境立体监测,例如:利用 DOAS 技术首次发 现了大气中的 OH、HONO、NO3、IO、OCIO 和 BrO, 探测对流层的卤素氧化物(ClO, BrO, IO)以研究对 流层臭氧洞和极地平流层卤素氧化物(BrO, IO, OCIO),确定 NO。自由基的平均浓度以研究其对海 洋及大陆边界层的氧化能力: 星载平台 (GOME、 SCIAMACHY、OMI、GOME2、TROPOMI、我国高分 5号科研卫星和大气环境 02 卫星)用于研究平流层 (OClO, NO₂, BrO)和对流层 (NO₂, BrO) 的痕量成 分浓度。由于篇幅有限,本文主要介绍一些技术在地 基平台、移动平台和星载平台的部分应用案例以及多 平台的联合应用案例。

2.1 地基平台

目前,地基大气环境光学监测技术主要包括: 1)针对气溶胶、NO₂、HONO、SO₂、HCHO、 CHOCHO 等大气污染成分和 CO2、CH4 等温室气 体成分并基于其分子"指纹"吸收特征开发的 DOAS 技术^[14-16]和 CRDS 技术^[17-19];2)针对气溶胶、O₃和 H₂O等大气成分并基于其对激光的吸收/散射特性 开发的 LIDAR 技术^[20-21]:3)针对挥发性有机化合 物(VOCs)和CO2、CO,以及CH4等温室气体并基 于其吸收和发射红外特征光谱的特性开发的 FTIR 技术^[22-23];4) 针对 CO₂、CH₄、N₂O、CO、NO、NH₃</sup>等气体成分并基于其窄带吸收特征开发的 TDLAS 技术^[24-32];5)针对温室气体 CO₂、CH₄ 柱浓度/垂直 廓线可移动观测开发的激光外差光谱(LHS)技 术^[33-35];6)针对大气自由基(HO_x)并基于其电子激 发态荧光特性开发的气体扩张激光诱导荧光 (FAGE)技术^[36]。其中,由于在垂直分布探测方面 的明显优势, MAX-DOAS, LIDAR 和 FTIR 技术已 被广泛应用在大气环境立体探测中。近年来,随着 窄线宽半导体激光器的发展,LHS技术也逐步应用 于大气成分整层探测中。

MAX-DOAS 技术通过观测不同高度仰角的太 阳吸收/散射光谱解析气溶胶和痕量气体(NO₂、 HONO、SO₂、H₂O、HCHO、CHOCHO、BrO 和 OCIO 等)的垂直廓线,其真正发展得益于其反演算 法的进步。目前发展较为成熟的反演算法主要有三 种:参数化算法、最优估计算法和查找表算法[37-39]。 参数化算法的缺点在于局部线性化和前向模型的高 度非线性化会导致反演奇值的出现;最优估计算法 的缺点在于反演结果过度依赖先验信息且对高空信 息不敏感;查找表算法作为一种最新开发的主流垂 直廓线反演算法,其反演速度得到明显提高且对较 高空污染成分的分布更加敏感。国际对比实验 CINDI-2 对三种垂直廓线反演算法之间的一致性及 准确性进行了讨论和验证^[40-42]。Wang 等^[43]在最优 估计算法的基础上于 2018 年提出了一种基于 MAX-DOAS的 O₃ 垂直廓线反演算法,该算法的提 出使 MAX-DOAS 成为唯一能同时无盲区观测气溶 胶和 O₃ 及其前体物垂直廓线的设备, PM₂ 和 O₃ 的协同控制在"十四五"规划中将发挥重要作用。此 外,MAX-DOAS 在探究大气污染物来源方面也发 挥了重要作用,图4(a)和(b)分别为监测到的NO。 垂直分布受本地排放和高空传输的主要影响。面对 大气污染成分区域空间分布特征获取的迫切需求, 组网观测已成为一种主流的发展趋势。目前,世界 上主要的 MAX-DOAS 观测网络有德国不来梅大学 建立的 DREDOM 网络、日本海洋地球科学技术研 究所建立的 MADRAS 网络、欧盟建立的 NOVAC 网络,以及中国科学技术大学建立的 USTC-DOAS 网络^[4,44-46]。此外, Zhang 等^[47]已成功基于区域 MAX-DOAS 组网并通过构建多模态融合网络开展 深度学习,实现了对区域大气污染成分空间立体分 布的重构和预测。

针对大气成分探测的激光雷达技术主要包括瑞 利/米氏/拉曼散射激光雷达、偏振激光雷达、差分吸 收激光雷达和光频梳高光谱分辨率激光雷达,其基 本结构都包括脉冲激光器、接收望远镜和信号检测 器三个基本部分,可实现对温度、湿度、云、气溶胶、 H₂O、O₃、NO₂、SO₂、CO₂和CH₄垂直分布的全时 段实时连续探测;此外,基于逆温变化或气溶胶梯度 变化可获得边界层高度信息。激光雷达的缺陷在于 存在探测盲区,该值取决于脉冲激光器和接收望远 镜的间距、脉冲激光器发散角和接收望远镜视场角。 图 5(a)展示了激光雷达探测到的气溶胶和O₃的三 个典型传输高度,表明了其在传输溯源分析上的巨

图 4 MAX-DOAS 探测到的 NO₂ 的垂直分布。(a)静稳天气 NO₂ 垂直分布;(b)传输过程 NO₂ 垂直分布 Fig. 4 Vertical distributions of NO₂ monitored by MAX-DOAS. (a) NO₂ vertical distribution under stable weather; (b) NO₂ vertical distribution during transport progress

图 5 激光雷达探测到的气溶胶和臭氧的时空分布。(a)不同传输高度下气溶胶和臭氧的垂直廓线^[21]; (b)臭氧传输通量时序图;(c) PM_{2.5}垂直分布区域重构

Fig. 5 Space-time distributions of aerosol and O₃ monitored by lidar. (a) Vertical profiles of aerosol and O₃ under different transport heights^[21]; (b) space-time distributions of O₃ during transport progress; (c) regional reconstruction of PM_{2.5} vertical distribution

大技术优势^[48-50]。在区域空间分布特征信息获取方面,组网观测已得到逐步重视。目前,世界上主要的激光雷达观测网络包括分别由德国莱布尼茨对流层研究所和中国科学院安徽光学精密机械研究所主导建立的气溶胶激光雷达网络EARLINET和AIOFM-LIDAR^[51-52]。图5(b)展示了在中国华北平原西南和东南传输通道上石家庄、唐山两个站点观测到的O₃传输通量,用于探究这两个城市对北

京的 O₃ 传输通量的变化。图 5(c)展示了华北平原 地区 PM_{2.5} 空间立体重构结果,其中,Xiang 等^[52]已 成功基于区域激光雷达组网并通过网格点统计插值 数据同化算法(GSI DA),实现了对区域气溶胶和 O₃ 的空间立体分布重构。

FTIR 技术适用于多组分温室气体浓度和通量 的测量,因为该技术具有高光谱分辨率、高灵敏度、 宽光谱范围的优势。FTIR 技术按其光学配置分为

第 42 卷 第 6 期/2022 年 3 月/光学学报

主动和被动两种测量方式,即采用红外光源的主动 技术和探测周围环境红外辐射的被动技术。主动测 量技术中,光谱仪的光学镜头接收来自红外光源发 射的红外辐射,辐射的红外线在开放或密闭的空气 中传播,光谱仪接收到红外辐射后,经由干涉仪的调 制被红外探测器检测,再由光谱仪的电子学部件和 相应数据处理模块完成干涉图的转换和存储,并通 过傅里叶变换将干涉图转换成红外光谱。被动技术 在光学结构上和主动技术类似,不同之处在于被动 技术探测的红外辐射来自周围环境,而主动技术探 测的辐射来自主动光源。图 6 是 FTIR 主动光谱技 术于 2021 年 7—8 月 在合 肥科学岛(31°54′N, 117°10′E)观测的近地面 CO₂、CH₄ 和 CO 的浓度变 化。除此之外,FTIR 技术还可以用于监测工业生 产过程中产生的 300 多种 VOCs,并用于监测其排 放量。高分辨率 FTIR 技术的光谱分辨率最高为 0.001 cm^{-1} ,能同时观测 CO₂、CH₄、N₂O、CO、水 汽、HDO、CFCs、HCFCs等多种温室气体以及 O₃、 HCl、HNO₃、HCN、NO₂、HCHO、NH₃等多种污染 气体的柱总量和垂直廓线。图 7(a)是全球总碳柱 观测网(TCCON)合肥站点 2015—2020 年观测的 大气 CO₂ 柱浓度的结果;图 7(b)是合肥站点 FTIR 观测数据与日本 GOSAT 卫星数据的比对结果,图 中误差条是日均值的标准偏差,两个数据的平均偏 差为(1.23±1.05)×10⁻⁶,线性相关系数 R 为 0.84。

Fig. 6 Surface greenhouse gases monitored by Fourier transform infrared spectrometer in Hefei

图 7 TCCON 合肥站点 FTIR CO₂ 观测结果。(a) 2015—2020 年观测的大气 CO₂ 柱浓度; (b) FTIR 观测数据与 GOSAT 卫星数据的比对

Fig. 7 CO_2 results observed by FTIR in TCCON Hefei station. (a) Total column concentration of CO_2 from 2015 to 2020; (b) comparison of CO_2 column concentration observed by FTIR with GOSAT satellite data

第 42 卷 第 6 期/2022 年 3 月/光学学报

LHS技术是近些年逐渐发展起来的整层大气 探测技术,其基本原理是本振激光和太阳光在光电 探测器光敏面上混频,再通过射频功率探测器对该 信号进行检测,得到外差信号,通过进一步调谐本振 激光的波长提取太阳光中的光谱信息。由于激光外 差双边探测的特点,系统光谱分辨率是射频电路带 宽的两倍,因此激光外差光谱技术可以实现 MHz 量级光谱分辨率探测。该技术在国内起步较晚,目 前主要是中国科学院安徽光学精密机械研究所相关 学者从事激光外差光谱技术方面的研究,该技术已 在 CH₄、CO₂等主要温室气体的柱浓度探测方面取 得较好的应用^[53-55]。图 8 为中国科学院安徽光学精 密机械研究所相关团队于 2019 年 10 月 1 日及 10 月 3 日利用研制的高分辨激光外差太阳辐射光谱探 测系统观测到的合肥科学岛 CO₂、CH₄、H₂O 柱总 量结果,图 9 是该系统与日本 GOSAT 卫星观测结 果的对比^[55]。

Fig. 8 Retrieved column abundances of four gases on October 1, 2019 and October 3, 2019^[55]. (a)-(d) Column abundances of CO₂, O₂, CH₄, and H₂O on October 1, 2019; (e)-(h) column abundances of CO₂, O₂, CH₄, and H₂O on October 3, 2019

2.2 移动平台

移动平台大气环境光学监测技术具有观测范围 广和实时性强的特点,尤其在溯源研究中具有明显 的技术优势,可在城市空气质量管理、污染暴露评估 和环境公平研究等方面发挥重要作用。目前,被广 泛应用的移动平台主要包括车载平台、船载平台和 机载平台。经常携带的大气环境光学监测设备包括 DOAS、LIDAR 和便携式 FTIR 等,可实现对气溶 胶、NO₂、SO₂、O₃、VOCs、CO₂和 CH₄等主要成分 的移动监测。移动监测过程中定量校准光学设备和 定量扣除移动平台自身排放,对于观测结果的准确 性和有效性至关重要。

图 10 分别展示了车载 DOAS NO₂、LIDAR 气 溶胶和 FTIR CO₂ 的走航观测结果。车载大气环境 光学监测技术通过快速处理光谱或雷达回波信号,

可实时捕捉走航路线沿途污染源;此外,针对重点城 市或工业园区开展车载绕圈大气环境光学监测,可 实现定量城市或工业园区大气污染和温室气体(尤 其是 CO₂ 和 CH₄)的排放通量监测,为大气污染及 碳排放核算提供技术支持^[56-57]。船载平台易因受水 浪的影响而产生不同程度的晃动,因此相对车载平 台,其通常配备多轴陀螺稳向装置以保证所搭载的 光学监测设备光路稳定。船载大气环境光学监测技 术已被广泛应用于开展沿江河、近海及深海等多个 不同区域尺度的走航观测,用于研究船舶排放、港口 污染、大气物理化学过程的海陆差异和污染物来源 等科学问题^[58-59]。机载平台搭载大气环境光学设备 开展飞行观测,相对于卫星平台具有更高的观测时 空分辨率且不易受云层高度的影响,但观测成本相 对较高。Xi 等^[60]基于中国科学院安徽光学精密机

图 9 高分辨激光外差太阳辐射光谱探测系统与日本 GOSAT 卫星测量得到的 CO₂、CH₄ 及 H₂O 柱浓度结果对比^[55] Fig. 9 Comparison of column concentrations of CO₂, CH₄, and H₂O obtained by high resolution laser heterodyne solar radiation spectral detection system and GOSAT^[55]

图 10 车载平台观测结果。(a) DOAS 观测 NO₂;(b) 雷达观测气溶胶消光系数^[57]; (c) 傅里叶变换红外光谱仪观测得到的 CO₂ 柱浓度

Fig. 10 Monitoring results of vehicle platform. (a) NO_2 monitored by DOAS; (b) aerosol extinction coefficient monitored by lidar^[57]; (c) column concentration of CO_2 monitored by FTIR

械研究所自主研发的紫外-可见光高光谱机载 DOAS设备成功实现了捕捉工业园区 NO₂ 烟羽排 放及其扩散过程。此外,Fujinawa等^[61]基于机载红 外高光谱设备获取工业园区 CO₂ 空间分布,同时探 究了碳-氮排放比例。因此,上述移动平台通过搭载 大气环境光学监测设备,将会在减污降碳行动中充 分发挥其技术优势,协助进行污染治理和碳排放 核算。

2.3 星载平台

自 20 世纪 30 年代以来,随着世界工业化进程

的不断推进,由颗粒物引起的严重空气污染事件频 繁发生,如1930年的比利时马斯河谷雾霾事件和 1952年的伦敦雾霾事件。为了监测全球大气气溶 胶变化,相关卫星遥感载荷陆续发射。自1978年美 国国家海洋和大气管理局(NOAA)发射第一颗用 于大气气溶胶光学厚度监测的卫星载荷 AVHRR 以来,NOAA 和美国国家航空航天局(NASA)又分 别于 1979 年和 1999 年发射了 TOMS 和 MODIS 两个气溶胶有效监测载荷^[62-64]。此外, NASA 在 2006年成功发射了世界第一颗用于监测全球气溶 胶垂直廓线和退偏比等光学特性参数的星载激光雷 达 CALIOP^[65]。自 20 世纪 40 年代洛杉矶光化学 烟雾事件发生以来,世界发达国家 Oa 污染事件频 发,特别是随着1984年南极O3空洞的发现,O3及 其前体物的监测被逐步重视。1996年,欧洲航天局 (ESA) 成功发射第一颗高分辨率卫星载荷 GOME^[66],实现对全球大气痕量污染气体的全覆盖 监测,分辨率达 40 km×320 km。2002-2017 年, 欧美国家又相继发射了多颗高光谱卫星载荷,包括 SCIAMACHY、OMI、OMPS 和 TROPOMI^[67-70], 上述载荷观测结果的空间分辨率不断提高,对大 气痕量成分的观测灵敏度和观测精度也在不断提 高。目前最新一代的高光谱卫星载荷 TROPOMI 的最高空间观测分辨率可达 3.5 km×7.0 km。

第 42 卷 第 6 期/2022 年 3 月/光学学报

我国在高光谱卫星载荷技术领域起步相对较晚, 到 2018年才成功发射了第一个具有完全自主知 识产权的高光谱卫星观测载荷 EMI^[71-72],其空间 分辨率达 13 km×8.0 km,打破了我国在大气环 境监测领域对国外同类高光谱卫星载荷的依赖 (图 11)。

20世纪50年代以来,世界工业化快速发展,人 类活动强烈影响并已改变了地球系统的碳循环过 程,全球变暖等一系列和碳排放相关的气候问题受 到人们越来越多的关注。碳排放监测需求的不断提 升成为相关卫星载荷技术发展的重要驱动力。2002 年 ESA 发射的 SCIAMACHY 由于具有近红外探 测波段,成为第一个能够监测 CO₂ 的卫星载荷^[73]。 2009年日本发射了世界上首颗真正意义上专门用 于监测温室气体(CO_2 和 CH_4)的卫星 GOSAT^[25]。 GOSAT-2 载荷于 2018 年由日本发射^[74]。此外, NASA 也分别于 2014 年和 2019 年发射了专门用于 CO。监测的 OCO-2 和 OCO-3 载荷^[75-77]。我国为 提高在应对全球变化过程中的国际话语权,已于 2016年发射了我国第一颗具有完全自主知识产权 的 CO, 观测科学实验卫星——"碳星" (TanSAT)^[78];随后,2018年又发射了专门用于 CO₂和CH₄监测的温室气体探测载荷GMI,该载 荷采用了新型的空间外差干涉光谱技术[79]。

图 11 污染和温室气体监测遥感卫星发展时间历程

Fig. 11 Timeline of development progress of remote sensing satellite for pollution and greenhouse gas monitoring

星载平台大气环境光学技术在探究大气污染和 温室气体空间分布及其传输来源分析等科学问题上 同样发挥了重要作用。图 12(a)和(b)展示了东北 亚地区 NO₂ 的空间分布,阐明了中-韩之间 NO₂ 存 在相互传输影响的可能。图 12(c)中展示了一次典 型的平流层 O₃ 入侵事件,为 O₃ 来源研究提供了观 测技术支撑。其中1 DU 表示在压力为 760 Torr (1 Torr=133.3223684 Pa)、温度为 273 K 的条件 下 10⁻⁵ m 厚度的臭氧层。图 12(d)成功捕捉到某 工业园区排放口的 CO 羽流变化^[80-83]。图 12(e)为 OCO-2 CO₂ 水平分布。从碳排放总量上看,我国实 现碳中和所需的碳排放减量远高于其他经济体,其

第 42 卷 第 6 期/2022 年 3 月/光学学报

封面文章・特邀综述

远短于欧美发达国家(欧盟 71 年、美国 43 年、中国 30 年)^[84-85]。因此,卫星光学遥感在碳排放源定位 和碳排放核算中发挥的作用不容忽视^[83, 86-87]。

中,近 30 年来我国的 CO₂ 排放量约为美国的 2 倍、 欧盟的 3 倍,约占全球 CO₂ 排放总量的 30%;从脱 碳时间上看,我国承诺的碳达峰到碳中和时间跨度

图 12 大气污染/温室气体的水平和垂直空间分布。(a)(b) TROPOMI NO₂ 水平分布;(c) TROPOMI O₃ 垂直分布; (d) TROPOMI CO 水平分布,五角星代表工厂排口位置^[83];(e) OCO-2 CO₂ 水平分布

Fig. 12 Horizontal and vertical distributions of air pollutants and greenhouse gases. (a) (b) TROPOMI NO₂ horizontal distributions; (c) TROPOMI O₃ vertical distribution; (d) TROPOMI CO horizontal distribution (pentagram represents factory outlet location)^[83]; (e) OCO-2 CO₂ horizontal distribution

2.4 多平台联合应用

在我国目前复杂的大气污染和碳排放形势下, 仅依靠单一观测手段或现有近地面大气成分观测网络,很难达到减污降碳的预期效果,甚至误导空气质 量管理行动。针对大气重污染发生-演变-消散全过 程的核心科学问题,建立大气污染传输通道立体观 测网,开展针对重污染时段和重污染过程的车载走 航、机载航测、地基遥感和卫星遥感观测,综合运用 大气环境监测网以及超级站等观测平台,构建重污 染过程闭合研究系统,开展边界层气象和大气化学 过程的同步观测实验,实现评估区域大气污染输送 和城市间大气污染的相互传输量,揭示边界层气象 和大气污染的演变规律和推动重污染及其周边地区 空气质量的持续改善^[81-82]。针对碳排放核算任务, 融合卫星、地基和移动观测平台,构建立体遥感网络,开展对重点碳排放园区或企业的高精度识别和 实时监控,实现对区域碳排放量的精准核算。

图 13 展示了京津冀地区的天-空-地一体化大 气光环境学立体综合观测网络,用于获取该区域的 大气成分和气象参数空间立体分布信息。京津冀地 区存在五大典型传输通道,即沿太行山脉的西南通 道、沿燕山山脉的东北通道、南部通道、东南通道和 西北通道。该综合观测网络融合多源卫星数据,用 于获取该区域气溶胶、NO₂、SO₂、HCHO、 CHOCHO、O₃、CO₂和CH₄的水平空间分布,实现 重点污染源和碳排放源的识别;地基平台包含气溶 胶、O₃及风廓线 LIDAR 和 MAX-DOAS 地面网 络,用于监测该区域风、气溶胶和 O₃ 及其前体物

第 42 卷 第 6 期/2022 年 3 月/光学学报

(NO₂、SO₂、HCHO、HONO 和 CHOCHO)的垂直 廓线;车载平台搭载 LIDAR、DOAS 和 FTIR 仪器 沿五大传输通道及重点排放源开展走航观测,用于 获取各个传输通道上污染物和碳的传输特征及重点 排放源的排放浓度和通量信息;机载平台搭载 LIDAR、DOAS、TDLAS 和 CRDS 监测设备开展飞 行航测,用于获取传输通道及核心区域的高时空分 辦率大气污染成分的水平分布信息。最后,对综合 观测网络进行实时数据质量控制,获取高精度校验 信息并将其实时发布,对综合观测网络进行数据融 合分析,给出污染物的三维区域分布,厘清五大传输 通道的污染物和碳输送特征,以定量化的污染物的 输送通量和总量。

3 机遇与挑战

从生态环境监测技术的主要领域来看,目前自 主研发的技术和设备基本可以满足我国环境管理的 需要,在远程化、智能化、支撑科学决策和精准监管 等方面取得很大提升,我国在这方面的技术水平基 本处于与世界先进水平的并跑阶段。光谱、色谱、质 谱成为环境监测中的热点技术,其国产化进程也取 得了长足的进步。但是离子源、紫外激光器、中红外 激光器、光电探测器、高灵敏的成像探测器、紫外波 段多次反射池、四极杆等关键"卡脖子"部件有待进 一步突破。从 2001-2019 年全球发表的科学仪器 论文来看:共性技术论文中质谱仪器相关论文 8056 篇,色谱仪器 5396 篇,光谱仪器 11424 篇;专用技术 论文中环境监测仪器相关论文 1756 篇,生命科学仪 器 1194 篇, 电子测量仪器 1460 篇, 天文仪器 1143 篇,计量仪器 2323 篇。所以,大力发展专用仪器有 着广泛的应用前景。

当前科学研究的方法手段和组织模式发生了重 大变化。大数据研究成为继实验科学、理论分析和

计算机模拟之后新的科学研究方式,大数据平台、高 效能计算中心等成为重要研究手段。数字化、智能 化推动科学研究向交叉融合无边界方向发展,科学 研究和技术创新越来越依赖大数据驱动。利用科技 创新推进生态环境技术发展,首先要发展传感器技 术,感知层是利用任何可以随时随地感知、测量、捕 获和传递信息的设备、系统或流程,实现对环境质 量、温室气体、污染源、生态、辐射等环境因素的更透 彻感知。其次,应用云计算、大数据等技术手段,整 合和分析海量的环境信息,实现海量存储、实时处 理、深度挖掘和模型分析,进而实现更深入的智能 化。这样才能为环境质量、减污降碳、生态保护、辐 射管理等业务提供更智慧的决策。我国在生态环境 和减污降碳监测方面存在的问题是:1)缺乏立体探 测技术设备,导致大气环境的垂直监测能力不足; 2) 动态、精细、不同背景下的生态环境参数和温室气 体监测能力不足。因缺乏全球尺度的连续观测技术 设备,无法全面研究平流层和对流层的物理化学过 程,评估大气成分变化对全球气候的影响,也不能证 明任何一个为限制温室气体而作出的努力都能缓解

第 42 卷 第 6 期/2022 年 3 月/光学学报

封面文章・特邀综述

或改善日益严重的环境变化。为了验证减排措施是 否真有效果、在对结果审查时需要提供哪些数据,亟 须发展温室气体排放监测与减排评估方法和技术 设备。

绿色低碳发展是国家重大发展战略,在可持续 发展目标的约束下,控制污染、实现低碳转型的绿色 发展,成为主要经济体发展的重要方向。单一技术 难以满足痕量污染物监测的多种要求,不同的监测 平台有着各自的优缺点,多平台、多技术联合观测已 成为大气污染物监测的重要手段。大气环境监测正 在向立体化、自动化和智能化的方向发展,学科交叉 融合明显,研究尺度也更加深入。通过构建全天时、 全天候、全尺度、全谱段、全要素的卫星遥感观测网 络体系,推动环境监测技术设备的轻量化、智能化发 展及与小型化无人机等多平台的系统性结合,发展 针对目标排放源的超光谱立体成像技术,融合大数 据深度学习技术、5G 通信技术和超级计算技术,实 现多空间尺度、多时间尺度、多参数和全过程控制的 "智慧环境"立体监测系统。天空地一体化碳源碳汇 监测技术将会成为实现"双碳"目标的重要手段。构 建不同尺度和不同层面的天地一体化温室气体核算 网络,将浓度光学监测与数值模型结合,实现对全球 不同区域碳源/碳汇的精确核算;同时,也将进一步 推动环境友好型监测技术的发展。总之,只有发展 更高精度、更多成分、更大范围、更加实用的多平台 环境监测技术才能满足我国控制污染、实现低碳转 型绿色发展的各种需求。为了达到这个目标,我们 还有很长的路要走。

参考文献

- [1] Feng Y Y, Ning M, Lei Y, et al. Defending blue sky in China: effectiveness of the "air pollution prevention and control action plan" on air quality improvements from 2013 to 2017 [J]. Journal of Environmental Management, 2019, 252: 109603.
- [2] Jiang X, Li G L, Fu W. Government environmental governance, structural adjustment and air quality: a quasi-natural experiment based on the three-year action plan to win the blue sky defense war [J]. Journal of Environmental Management, 2021, 277: 111470.
- [3] Fan H, Zhao C F, Yang Y K. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014—2018 [J]. Atmospheric Environment, 2020, 220: 117066.
- [4] Liu C, Xing C Z, Hu Q H, et al. Ground-based

hyperspectral stereoscopic remote sensing network: a promising strategy to learn coordinated control of O_3 and $PM_{2.5}$ over China[EB/OL]. (2021-06-01)[2022-01-29]. https: // www. sciencedirect. com/science/article/pii/S209580992100268X.

- [5] Hu Q H, Liu C, Ji X, et al. Vertical structure of the transport fluxes of aerosol and its precursors on the southwest transport pathway in the Beijing-Tianjin-Hebei region [C] // EGU General Assembly 2020, May 4-8, 2020, online. München: EGU, 2020.
- [6] Meng F H, Qin M, Tang K, et al. High-resolution vertical distribution and sources of HONO and NO₂ in the nocturnal boundary layer in urban Beijing, China [J]. Atmospheric Chemistry and Physics, 2020, 20(8): 5071-5092.
- [7] Zhang K, Zhou L, Fu Q Y, et al. Vertical distribution of ozone over Shanghai during late spring: a balloon-borne observation[J]. Atmospheric Environment, 2019, 208: 48-60.
- [8] Li X B, Peng Z R, Lu Q C, et al. Evaluation of unmanned aerial system in measuring lower tropospheric ozone and fine aerosol particles using portable monitors [J]. Atmospheric Environment, 2020, 222: 117134.
- [9] Albert S, Amarilla A A, Trollope B, et al. Assessing the potential of unmanned aerial vehicle spraying of aqueous ozone as an outdoor disinfectant for SARS-CoV-2 [J]. Environmental Research, 2021, 196: 110944.
- [10] Chen Q, Li X B, Song R F, et al. Development and utilization of hexacopter unmanned aerial vehicle platform to characterize vertical distribution of boundary layer ozone in wintertime[J]. Atmospheric Pollution Research, 2020, 11(7): 1073-1083.
- [11] Wu C, Liu B, Wu D, et al. Vertical profiling of black carbon and ozone using a multicopter unmanned aerial vehicle (UAV) in urban Shenzhen of South China[J]. Science of the Total Environment, 2021, 801: 149689.
- [12] Allan R P, Arias P A, Berger S, et al. Climate change 2021: the physical science basis [M]. New York: Cambridge University Press, 2021.
- [13] Liu W Q. Environmental optics and technology[M]. Hefei: Anhui Science and Technology Press, 2020.
 刘文清.环境光学与技术[M]. 合肥:安徽科学技术 出版社, 2020.
- [14] Wang Z J, Hao J, Song C G, et al. Traffic pollution gas monitoring based on differential optical absorption spectroscopy technology[J]. Laser & Optoelectronics Progress, 2020, 57(9): 093003.
 工音宏 邦基 字員来 筆 其王美公来受照收来議

第 42 卷 第 6 期/2022 年 3 月/光学学报

技术的交通主干道污染气体监测[J].激光与光电子 学进展,2020,57(9):093003.

- [15] 黄业园,李昂,秦敏,等.基于车载多轴差分吸收光 谱技术的武汉氮氧化物分布及排放研究[J].光学学 报,2021,41(10):1030002.
 Huang Y Y, Li A, Qin M, et al. Nitrogen oxides spatial distribution and emissions with mobile multiaxis differential optical absorption spectroscopy in Wuhan City[J]. Acta Optica Sinica, 2021, 41(10): 1030002.
- [16] Wang X R, Cai X S, Chen J, et al. Analytical simulation of ultraviolet differential absorption spectra of benzene, toluene, and xylenes [J]. Laser & Optoelectronics Progress, 2020, 57 (23): 233004.
 王祥如,蔡小舒,陈军,等. 苯、甲苯和二甲苯紫外 差公照收來遊網転費地[J], 激來長來由乙勞世展

差分吸收光谱解析模拟[J].激光与光电子学进展, 2020,57(23):233004.

[17] Kou X W, Zhou B, Liu X C, et al. Measurement of trace NH₃ concentration in atmosphere by cavity ring-down spectroscopy[J]. Acta Optica Sinica, 2018, 38 (11): 1130001.
寇潇文,周宾,刘训臣,等. 腔衰荡光谱方法测量大 气中痕量 NH₃ 的浓度[J].光学学报, 2018, 38

(11): 1130001.

- [18] Chen B, Sun Y R, Zhou Z Y, et al. Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis [J]. Applied Optics, 2014, 53(32): 7716-7723.
- [19] Ma G S, He Y B, Chen B, et al. Quasi-simultaneous sensitive detection of two gas species by cavityringdown spectroscopy with two lasers [J]. Sensors, 2021, 21(22): 7622.
- [20] Prasad P, Raman M R, Ratnam M V, et al. Nocturnal, seasonal and intra-annual variability of tropospheric aerosols observed using ground-based and space-borne lidars over a tropical location of India [J]. Atmospheric Environment, 2019, 213: 185-198.
- [21] 王馨琦,张天舒,裴成磊,等.差分吸收激光雷达监测广州市臭氧垂直分布特征[J].中国激光,2019,46(12):1211003.
 Wang X Q, Zhang T S, Pei C L, et al. Monitoring of vertical distribution of ozone using differential absorption lidar in Guangzhou[J]. Chinese Journal of Lasers, 2019, 46(12): 1211003.
- [22] Xu B, Ye X X, Zhang Y, et al. Emission characteristics of VOCs from urban catering using portable FTIR technology [J]. Journal of Atmospheric and Environmental Optics, 2020, 15 (5): 357-364.

徐波, 叶晓新, 张毅, 等.利用便携式 FTIR 技术获 取城市餐饮 VOCs 排放特征 [J].大气与环境光学学 报, 2020, 15(5): 357-364.

- [23] Shan C G, Wang W, Liu C, et al. Retrieval of vertical profiles and tropospheric CO₂ columns based on high-resolution FTIR over Hefei, China [J]. Optics Express, 2021, 29(4): 4958-4977.
- $\circle{24}\circle{24}$ Lan L J, Ghasemifard H, Yuan Y, et al. Assessment of urban CO2 measurement and source attribution in Munich based on TDLAS-WMS and trajectory analysis [J]. Atmosphere, 2020, 11(1): 58.
- [25] Xin F X, Li J, Guo J J, et al. Measurement of atmospheric CO₂ column concentrations based on open-path TDLAS[J]. Sensors, 2021, 21(5): 1722.
- [26] Zang Y P, Nie W, Xu Z Y, et al. Measurement of trace water vapor based on tunable diode laser absorption spectroscopy [J]. Acta Optica Sinica, 2018, 38(11): 1130004.
 臧益鹏, 聂伟, 许振宇, 等. 基于可调谐二极管激光 吸收光谱的痕量水汽测量[J]. 光学学报, 2018, 38 (11): 1130004.
- [27] Cui H B, Wang F, Li M Y. Measurements of CO₂ temperature and concentration in high temperature environment based on tunable diode laser absorption spectroscopy[J]. Laser & Optoelectronics Progress, 2018, 55(5): 053003.
 崔海滨, 王飞, 李玫仪. 基于 TDLAS 技术测量高温 环境中 CO₂ 的温度和浓度[J].激光与光电子学进展, 2018, 55(5): 053003.
- [28] Wei M, Kan R F, Chen B, et al. Calibration-free wavelength modulation spectroscopy for gas concentration measurements using a quantum cascade laser[J]. Applied Physics B, 2017, 123(5): 149.
- [29] Chen X, Yang C G, Hu M, et al. Highly-sensitive NO, NO₂, and NH₃ measurements with an openmultipass cell based on mid-infrared wavelength modulation spectroscopy [J]. Chinese Physics B, 2018, 27(4): 040701.
- [30] Shao L G, Chen J J, Wang K Y, et al. Highly precise measurement of atmospheric N₂O and CO using improved white cell and RF current perturbation [J]. Sensors and Actuators B: Chemical, 2022, 352: 130995.
- [31] Shao L G, Fang B, Zheng F, et al. Simultaneous detection of atmospheric CO and CH₄ based on TDLAS using a single 2. 3 μm DFB laser [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117118.
- [32] Yang C G, Mei L, Wang X P, et al. Simultaneous measurement of gas absorption and path length by

employing the first harmonic phase angle method in wavelength modulation spectroscopy [J]. Optics Express, 2020, 28(3): 3289-3297.

- [33] Rodin A, Klimchuk A, Nadezhdinskiy A, et al. High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption [J]. Optics Express, 2014, 22(11): 13825-13834.
- [34] Hoffmann A, MacLeod N A, Huebner M, et al. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO₂ measurements
 [J]. Atmospheric Measurement Techniques, 2016, 9 (12): 5975-5996.
- [35] Wilson E L, McLinden M L, Miller J H, et al. Miniaturized laser heterodyne radiometer for measurements of CO₂ in the atmospheric column[J]. Applied Physics B, 2014, 114(3): 385-393.
- [36] Kukui A, Ancellet G, le Bras G. Chemical ionisation mass spectrometer for measurements of OH and peroxy radical concentrations in moderately polluted atmospheres[J]. Journal of Atmospheric Chemistry, 2008, 61(2): 133-154.
- [37] Vlemmix T, Piters A J M, Berkhout A J C, et al. Ability of the MAX-DOAS method to derive profile information for NO₂: can the boundary layer and free troposphere be separated? [J]. Atmospheric Measurement Techniques, 2011, 4(12): 2659-2684.
- [38] Bösch T, Rozanov V, Richter A, et al. BOREAS: a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases [J]. Atmospheric Measurement Techniques, 2018, 11 (12): 6833-6859.
- [39] Beirle S, Dörner S, Donner S, et al. The Mainz profile algorithm (MAPA) [J]. Atmospheric Measurement Techniques, 2019, 12(3): 1785-1806.
- [40] Lukas T J, Udo F, François H, et al. Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign [J]. Atmospheric Measurement Techniques, 2021, 14(1): 1-35.
- [41] Wang Y, Apituley A, Bais A, et al. Intercomparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign [J]. Atmospheric Measurement Techniques, 2020, 13 (9): 5087-5116.
- [42] Frieß U, Beirle S, Alvarado Bonilla L, et al. Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies using synthetic data[J]. Atmospheric Measurement Techniques, 2019, 12 (4): 2155-2181.
- [43] Wang Y, Pukite J, Wagner T, et al. Vertical profiles

of tropospheric ozone from MAX-DOAS measurements during the CINDI-2 campaign: part 1: development of a new retrieval algorithm[J]. Journal of Geophysical Research: Atmospheres, 2018, 123 (18): 10637-10670.

- Richter A, Adukpo D, Fietkau S, et al. Sciamachy validation using ground-based DOAS measurements of the University of Bremen BREDOM network[C]// Proceeding of ENVISAT Validation Workshop, December 9-13, 2002, Frascati, Italy. [S.l.: s.n.], 2002.
- [45] Kanaya Y, Irie H, Takashima H, et al. Long-term MAX-DOAS network observations of NO₂ in Russia and Asia (MADRAS) during the period 2007-2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations[J]. Atmospheric Chemistry and Physics, 2014, 14(15): 7909-7927.
- [46] Galle B, Johansson M, Rivera C, et al. Network for Observation of Volcanic and Atmospheric Change (NOVAC): a global network for volcanic gas monitoring: network layout and instrument description [J]. Journal of Geophysical Research Atmospheres, 2010, 115(D5): D05304.
- [47] Zhang S L, Li B, Liu L, et al. Prediction of vertical profile of NO₂ using deep multimodal fusion network based on the ground-based 3-D remote sensing [J].
 IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-13.
- [48] Xiang Y, Lü L H, Chai W X, et al. Using lidar technology to assess regional air pollution and improve estimates of PM_{2.5} transport in the North China Plain [J]. Environmental Research Letters, 2020, 15(9): 094071.
- [49] Wang Z, Liu C, Xie Z Q, et al. Elevated dust layers inhibit dissipation of heavy anthropogenic surface air pollution [J]. Atmospheric Chemistry and Physics, 2020, 20(23): 14917-14932.
- [50] Langford A O, Alvarez R J II, Brioude J, et al. Coordinated profiling of stratospheric intrusions and transported pollution by the Tropospheric Ozone Lidar Network (TOLNet) and NASA Alpha Jet experiment (AJAX): observations and comparison to HYSPLIT, RAQMS, and FLEXPART [J]. Atmospheric Environment, 2018, 174: 1-14.
- [51] Pappalardo G, Amodeo A, Apituley A, et al. EARLINET: towards an advanced sustainable European aerosol lidar network [J]. Atmospheric Measurement Techniques, 2014, 7(8): 2389-2409.
- [52] Xiang Y, Zhang T S, Ma C Q, et al. Lidar vertical observation network and data assimilation reveal key

processes driving the 3-D dynamic evolution of $PM_{2.5}$ concentrations over the North China Plain [J]. Atmospheric Chemistry and Physics, 2021, 21(9): 7023-7037.

- [53] Wang J, Wang G, Tan T, et al. Mid-infrared laser heterodyne radiometer (LHR) based on a 3.53 μm room-temperature interband cascade laser[J]. Optics Express, 2019, 27(7): 9610-9619.
- [54] Deng H, Yang C G, Wang W, et al. Near infrared heterodyne radiometer for continuous measurements of atmospheric CO₂ column concentration [J]. Infrared Physics & Technology, 2019, 101: 39-44.
- [55] Deng H, Yang C G, Xu Z Y, et al. Development of a laser heterodyne spectroradiometer for highresolution measurements of CO₂, CH₄, H₂O and O₂ in the atmospheric column [J]. Optics Express, 2021, 29(2): 2003-2013.
- [56] Tan W, Zhao S H, Liu C, et al. Estimation of winter time NO_x emissions in Hefei, a typical inland city of China, using mobile MAX-DOAS observations
 [J]. Atmospheric Environment, 2019, 200: 228-242.
- [57] Lü L H, Xiang Y, Zhang T S, et al. Comprehensive study of regional haze in the North China Plain with synergistic measurement from multiple mobile vehicle-based lidars and a lidar network [J]. The Science of the Total Environment, 2020, 721: 137773.
- [58] Hong Q Q, Liu C, Chan K L, et al. Ship-based MAX-DOAS measurements of tropospheric NO₂, SO₂, and HCHO distribution along the Yangtze River [J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5931-5951.
- [59] Tan W, Liu C, Wang S, et al. Tropospheric NO₂, SO₂, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellites data[J]. Atmospheric Chemistry and Physics, 2018, 18(20): 15387-15402.
- [60] Xi L, Si F Q, Jiang Y, et al. First high-resolution tropospheric NO₂ observations from the Ultraviolet Visible Hyperspectral Imaging Spectrometer (UVHIS) [J]. Atmospheric Measurement Techniques, 2021, 14(1): 435-454.
- [61] Fujinawa T, Kuze A, Suto H, et al. First concurrent observations of NO₂ and CO₂ from power plant plumes by airborne remote sensing [J]. Geophysical Research Letters, 2021, 48(14): e2021GL092685.
- [62] Xing C Z, Liu C, Wang S S, et al. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China [J]. Atmospheric Chemistry and

第 42 卷 第 6 期/2022 年 3 月/光学学报

Physics, 2017, 17(23): 14275-14289.

- [63] Liu C, Gao M, Hu Q H, et al. Stereoscopic monitoring: a promising strategy to advance diagnostic and prediction of air pollution [J]. Bulletin of the American Meteorological Society, 2021, 102 (4): E730-E737.
- [64] Stowe L L. The use of AVHRR measurements of reflected sunlight for global sensing of aerosol particle optical thickness from Tiros-N satellites [C] // Joint Conference on Sensing of Environmental Pollutants, 4th, New Orleans, La., November 6-11, 1977. Washington, D. C.: American Chemical Society, 1978: 143-146.
- [65] Sweet C, Bird R A, Cavanagh D, et al. The local origin of the febrile response induced in ferrets during respiratory infection with a virulent influenza virus
 [J]. British Journal of Experimental Pathology, 1979, 60(3): 300-308.
- [66] Song Z J, Fu D S, Zhang X L, et al. MODIS AOD sampling rate and its effect on PM_{2.5} estimation in North China [J]. Atmospheric Environment, 2019, 209: 14-22.
- [67] de Oliveira A M, Souza C T, de Oliveira N P M, et al. Analysis of atmospheric aerosol optical properties in the northeast Brazilian atmosphere with remote sensing data from MODIS and CALIOP/ CALIPSO satellites, AERONET photometers and a ground-based lidar[J]. Atmosphere, 2019, 10(10): 594.
- [68] Burrows J P, Weber M, Buchwitz M, et al. The global ozone monitoring experiment (GOME): mission concept and first scientific results[J]. Journal of the Atmospheric Sciences, 1999, 56(2): 151-175.
- [69] Piters A J M, Bramstedt K, Lambert J C, et al. Overview of SCIAMACHY validation: 2002-2004
 [J]. Atmospheric Chemistry and Physics, 2006, 6 (1): 127-148.
- [70] Boersma K F, Eskes H J, Veefkind J P, et al. Nearreal time retrieval of tropospheric NO₂ from OMI
 [J]. Atmospheric Chemistry and Physics, 2007, 7
 (8): 2103-2118.
- [71] Flynn L, Long C, Wu X, et al. Performance of the ozone mapping and profiler suite (OMPS) products
 [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(10): 6181-6195.
- [72] Lorente A, Boersma K F, Eskes H J, et al. Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI[J]. Scientific Reports, 2019, 9: 20033.
- [73] Zhang C X, Liu C, Chan K L, et al. First observation of tropospheric nitrogen dioxide from the

Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite[J]. Light: Science & Applications, 2020, 9: 66.

[74] Zhao R, Zhang C X, Wu Y, et al. Analysis of spatiotemporal variations of tropospheric nitrogen dioxide in the North China plain based on EMI[J]. Journal of Atmospheric and Environmental Optics, 2021, 16 (3): 186-196.
赵冉,张成歆,吴跃,等. 基于 EMI 观测华北平原对

流层 NO₂ 的时空变化研究 [J]. 大气与环境光学学 报, 2021, 16(3): 186-196.

- [75] Reuter M, Buchwitz M, Schneising O, et al. A method for improved SCIAMACHY CO₂ retrieval in the presence of optically thin clouds[J]. Atmospheric Measurement Techniques, 2010, 3(1): 209-232.
- [76] Yokota T, Yoshida Y, Eguchi N, et al. Global concentrations of CO₂ and CH₄ retrieved from GOSAT: first preliminary results[J]. SOLA, 2009, 5: 160-163.
- [77] Nakajima M, Kuze A, Suto H. The current status of GOSAT and the concept of GOSAT-2 [J]. Proceedings of SPIE, 2012, 8533: 853306.
- [78] Reuter M, Buchwitz M, Schneising O, et al. Towards monitoring localized CO₂ emissions from space: co-located regional CO₂ and NO₂ enhancements observed by the OCO-2 and S5P satellites [J]. Atmospheric Chemistry and Physics, 2019, 19(14): 9371-9383.
- [79] Köehler P, Frankenberg C, Magney T S, et al. Global retrievals of solar induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2 [J]. Geophysical Research Letters, 2018, 45(19): 10456-10463.
- [80] Eldering A, Taylor T E, O'Dell C W, et al. The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated

第 42 卷 第 6 期/2022 年 3 月/光学学报

data [J]. Atmospheric Measurement Techniques, 2019, 12(4): 2341-2370.

- [81] Hong X H, Zhang P, Bi Y M, et al. Retrieval of global carbon dioxide from TanSat satellite and comprehensive validation with TCCON measurements and satellite observations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16.
- [82] Ye H H, Wang X H, Wu S C, et al. Atmospheric CO₂ retrieval method for satellite observations of greenhouse gases monitoring instrument on GF-5[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 231-238.
 叶函函, 王先华, 吴时超, 等. 高分五号卫星 GMI 大 气 CO₂ 反演方法[J]. 大气与环境光学学报, 2021, 16(3): 231-238.
- [83] Tian Y, Sun Y W, Borsdorff T, et al. Quantifying CO emission rates of industrial point sources from Tropospheric Monitoring Instrument observations [J]. Environmental Research Letters, 2022, 17(1): 014057.
- [84] An official website of the European Union[EB/OL]. [2021-03-04]. https://edgar.jrc.ec.europa.eu/ overview.php?v=50_GHG.
- [85] Global carbon atlas[EB/OL]. [2021-03-04]. http:// www.globalcarbonatlas.org/en/CO2-emissions.
- [86] Zheng B, Chevallier F, Ciais P, et al. Observing carbon dioxide emissions over China's cities and industrial areas with the Orbiting Carbon Observatory-2 [J]. Atmospheric Chemistry and Physics, 2020, 20(14): 8501-8510.
- [87] Liu F, Duncan B N, Krotkov N A, et al. A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide [J]. Atmospheric Chemistry and Physics, 2020, 20(1): 99-116.